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AESTRACT 

A technique is described for including the effects of surface tension in time-dependent, 
hydrodynamics calculations. The fluid interface is initially marked with a sequence of 
interface particles, which thereafter move through the computation mesh at the local 
fluid velocity. At each calculation cycle these particles are joined by sections of cubits 
in order to determine the orientation of the fluid interface. From this orientation the 
surface tension contribution to the fluid acceleration is determined. 

1. INTRQDUGTE~N 

Surface tension plays an important role in a large variety of fluid flows. These 
range from rather small scale phenomena, such as the breakup or coalescence of 
raindrops, to large scale flows, like the motion of fuel in a s 
gravity conditions. Laboratory studies of these phenomena are often ~Qrn~~ca~~~~ 
however, by problems encountered in making measurements or iaz simu the 
actual physical situation. For reasons such as these, it is desirable to i the 
effect of surface tension in numerical fluid flow studies. 

In this paper we describe a technique for including the surface tension contri- 
bution to time-dependent, multi-material or free surface flow calculations. This 
technique has been successfully applied to the study of the effects of surface ~e~s~o~ 
on the linear and nonlinear phases of two fluid ~ayleigb-Taylor i~stab~~~t~ [I]. 
The results of the linear study were found to be in good agreement with the a~a~~t~~ 
predictions of Chandrasekhar [2], thereby establishing confidence in t 
of the method. IIowever, the greatest test of the method came in its 
to the highly contorted flow of the nonlinear regime. These tests indic 
method is well suited to such complicated flow problems. 

The description of the technique for computing the surface tension fmx is 
presented in detail in this paper. Section 2 explains the basic method for resolving 

97 



98 DALY 

the orientation of the fluid interface and also includes some auxiliary subprograms 
that have proved to be extremely useful in the calculation of highly contorted flows. 
Section 3 describes the method used to compute the surface tension force, 
under normal and unusual circumstances, and for plane as well as cylindrically 
symmetric coordinate systems. The entire computation is placed in perspective 
in Sec. 4, indicating the order in which the various subprograms are executed 
and the situations where they are needed. 

2. RESOLVING THE FLUID INTERFACE 

A. Interface Particles 

The successful calculation of surface tension forces requires a detailed knowledge 
of the orientation of the fluid interface. In finite difference calculations tied to 
fixed (or for that matter, moving) calculation meshes, the position of a fluid 
interface is not sufficiently well resolved to make accurate estimates of surface 
curvature. In the technique described here, this deficiency is overcome by the use 
of interface particles. These are marker particles that are initially laid out in order 
along the fluid interface and thereafter mark the interface as they move at the 
local fluid velocity, This is their sole function in the numerical computation. 

The magnitude and direction of the surface tension force are ordinarily deter- 
mined from the orientation of a curve that fits the interface particles (Section 2-B), 
rather than from the orientation of the particles themselves. However, the degree 
of accuracy, by which this curve actually represents the fluid interface, depends 
to some extent upon the proper initial placement and spacing of the interface 
particles. We offer no precise rules in this regard, since the initial particle arrange- 
ment should be chosen to fit the problem under consideration. Instead, we present 
certain guidelines that were found to be useful in the calculations of Ref. [1], 
which were concerned with the effect of surface tension forces on the growth 
of Rayleigh-Taylor and Kelvin-Helmholtz instabilities. 

In these calculations the interface was subjected to a great deal of stretching 
along the vertical mesh boundaries. In anticipation of this, the particles were 
initially packed more closely in the cells adjacent to these boundaries than in the 
interior of the mesh. The spacing was 0.2s in two cells adjacent to the left and to 
the right boundaries, and 0.4s in interior cells, s being the mesh interval. Thus, 
in the twenty-cell wide mesh the interface was initially represented by about 
sixty particles, but this could be changed in the course of the calculation through 
a facility for adding or deleting particles (Section 2-E). 

Variations on this spacing were tried and found to be less satisfactory. When 
the spacing was doubled, so that half as many particles were used, it was found 
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that short wavelength perturbations of the interface could not properly be resolv 
If the perturbation were such that only a few interface particles were displa 
from an otherwise smooth sequence, then the curve fitting technique pro 
an interface that had a jagged appearance, not only in the vi~~~~ty of the perturba- 
tion, but in the adjacent smooth sections as well. These erroneous curvatures 
would then produce erroneous surface tension forces. These d~~~~~ties disappeared 
when the resolution was increased, but it was important not to ~ver~or~e~t. FOP 
when the particles were too closely packed, any slight ~~~t~at~~~ of partick 
position away from a smooth arrangement could give rise to a large curvature 
of the interface. In this way, an insignificant wiggle in the line of particles cou\d 
produce a strong surface tension force. A proper balance was achieved when the 
particles were spaced sufficiently close to resolve the smallest physical 
expected in the finite difference calculation, but not sig~~fi~a~t~y closer than this. 

Bn Ref. [I] it was possible to obtain good surface resolution right up to the 
mesh boundaries. This was accomplished by placing the first and last particles 
a very small. distance, O.OOOls, away from the boundaries. 
symmetry, the particles moved tangent to the bou 
calculation. 

The velocity at which the interface particles are moved through the finite 
difference mesh is determined from an area-weighted average of the l0ca.l cellular 
velocities. The procedure is illustrated in Fig. I for the case of cell centesed 

j+l 

FIG. 1. The procedure for determining the area weighted average of local cellular ve?,ocities 
for the purpose of moving interface particles. A ceil-size box is centered about the partick and the 
percentage of area overlap in adjacent cells gives the weighting to be applied to those cell velocities, 
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velocities. A rectangle the size of a calculation cell is placed over and centered at 
the particle. This rectangle overlays parts of four neighboring cells. In the figure 
these are cells ij, i + Ij, ij + 1, and i i lj + 1. The velocity with which particle k 
is moved is given by 

where A is the mesh area and the subscripted A’s give the overlapped areas of 
adjacent cells. Detailed area weighting formulas may be obtained from Ref. [3] 
for cell centered velocities or from Ref. [4] for boundary centered velocities. 

B. Interface Line 

For the purpose of determining slopes and curvatures along the fluid interface, 
the interface particles are connected at each cycle of calculation to form an 
interface line. The particles are joined by sections of cubits through the application 
of a spline fit interpolation scheme [5]. (This reference describes the excellent 
approximation properties of the spline fit technique.) Consider an interface 
that is represented by an ordered sequence of interface points: 

(Xl 9 Yl>, (x2 > Y2L (xn > Yd, 

that is single valued in x. Following Walsh et al. (51, we represent the interface 
line by an approximating function, V(X), that has second derivatives, Mk, 
k = 1, 2,..., ~1, at the interface points. Between the points, the second derivative 
varies linearly, 

y”(x) = M,-, xkrn j MkXfxk-l 
xk-1 <x d xk (1) 

k k 

where tk = xk - xkel . Integrating twice and requiring that y(xk) = yk gives 

Y’(X) = --M,-1 
(Xk - 4” + jpfk 

21 
k 

(x - &-I)~ + Yk - h-l _ &fk - 6”k-b ““, 

21, lk 

(2) 

y(x) = M,-, cxk; x)3 + Mk cx -6y3 + (p - z&) (X - Xkwl) 
k k k 

- qq (Xk - x), (3) 
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over the same range in X. The M’s are then determine by requiring that the sX 
vary continuously at the interface points, i.e., that y’( -> = y’(xrc +>. This y 
a system of yz simultaneous equations, 

which, together with the two end conditions, can be solved for the M’s 
In the calculations that have been performed to date, the interface line has been 

constrained to begin at the left boundary of the mesh and to terminate at the 
right boundary. Since these boundaries are lines of symmetry, we re 
the interface line intersect them normally. This is equivalent to placing an 

e each boundary in symmetry with the first particle 
making the second derivative the same at e two points. Thus, 
oundary coincides with x = 0 and the right undary with x = IL, 

we construct two imaginary points: 

x(J = -x1 

Yo = Yl 

M, = Ml 

and 

With these substitutions, the system of equations (4,) becomes 

The coefhcients of the M’s form a &i-diagonal matrix for w eace 
Rachford [6] give a convenient explicit inversion technique. the 
determined using that technique, one has sufficient information to solve Eqs. (I.)-( 
for any abscissa in the range, 0 < x < L. This provides e information neede 
to determine the magnitude and direction of the surface tension force (Section 3) 
at any point along the interface line. 



102 DALY 

Various other boundary conditions could be employed in this interface treatment. 
Of particular interest for engineering applications is the static meniscus end 
condition. This is illustrated in Fig. 2 for the case of a wall located at x = 0. 
The interface makes a constant contact angle, cp, with this wall at all times. To 
incorporate this condition, one might proceed in a manner similar to that used 

FIG. 2. The figure illustrates a procedure for incorporating a static meniscus boundary 
condition in spline fit calculations. 

above for a line of symmetry. The first real interface particle, #I, would be placed 
a distance x1 from the wall, where x1 measures the width of the (approximately) 
linear part of the meniscus. An additional particle, #O, can then be imagined to 
lie on the wall at such a position that the interface line connecting it with the 
first real particle has slope - cot 9). By evaluating Eq. (2) at x = 0, k = 1, 
one may verify that this requires that M,, = - +Ml . Particle #0 is then defined by 

x0 = 0, 

Yo = Yl + &cot % (7) 

MO = - &Ml. 

Using this end condition, the first equation in (6) becomes 
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This method of including static meniscus end conditions has not yet 
applied in numerical calculations. Before use is made of it, it should be car 
tested fsr accuracy and completeness. One possible s~o~coming would 
change in the width of the meniscus due to the motion of particle #l relathe to 
the wall This could be corrected by relocating this particle to the point 513. the 

interface line that lies the initial distance, x1 , from, the wall after each cycle of 
calculation. 

G. ~~b~~vi~illg the Interface Line 

In the treatment above, it is assumed that the interface line is fitted to a sequence 
of interface particles that is monotonic in x. In fact, however, it is quite I 
that in highIy contorted flows the line of particles could become folded 
upon itself and be double valued in X. In that case infrnite slopes wouId be obtame 
and the spline fit technique could not be applied. 

r to be able to calculate such complicated kid flows, a techn 
g the interface particles into monotonic subsequences has been 

in the surface tension treatment. The entire line of particles is tested and 
sions are determined before the spline fitting begins. The ~ri~~rio~ for G 
from one abscissa to another is that the slope of straight line segments ~o~~~~~i~g 
the particles exceed 1.5 in magnitude for five contiguous particles. Thus one woul 
change from a subsequence of particles in which x is the abscissa to one in which JJ 
is the abscissa at particle k if 

Yi+l 1;. > 1.5, 
-%l z 

i = k, k + 1, k + 2, k f 3, k + 4, 

This criterion was arrived at as the result of ex~~rime~tatio~ in calculations of 
the effect of surface tension on Rayleigh-Taylor instability [I]. The test was found 
to be su&ziently severe to avoid unnecessary changes in abscissa in that ~al~~I~~io~, 
For other calculations it may be less appropriate. Tn particular, if the psLrtides are 
wideIy spaced, the requirement of five successive slopes exceeding 1.5 in rnag~~tu 
may be excessive. 

In the calculation of Ref. [l], it is quite common to have three or Eve (the ~~rnbe~ 
is always odd since the interface is constrained to begin and end with a subsequence 
monotonic in X) separate sequences when the fluid ce becomes ~xte~d~~ 
and contorted with time. The roles of abscissa and are i~ter~ha~g~d in 
alternate sequences, but each sequence can be either monotone incre&ng OF 
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decreasing in the abscissa. Each is designated as a separate array in storage, 
with its increasing or decreasing character indicated by a simple logic test. When 
a sequence contains fewer than five interface particles, the spline fit technique 
should not be used. In those cases, the surface tension force is calculated through 
the use of an alternative method (Sections 3-B and D). 

A separate spline fit is computed for each subsequence of the interface line, 
and it is desirable that these sections of the curve fit together as smoothly as 
possible. Experience has shown that an important consideration for smooth 
joining of segments is that the break in the interface line be made well away 
from a region of large or infinite slope for either abscissa. Thus, in the example 
cited above, it would be necessary to insure that the increasing (or decreasing, 
as the case may be) trend in x extend to particles k + 1 and k + 2, and that the 
trend in y extend to k - 1 and k - 2. If this were not done, one might introduce 
serious error in the application of the boundary condition at the juncture. 

Two different types of boundary conditions have been tested at break points. 
In both, the spline fit determination is made as though the curve passed through 
the first particle beyond the break (particle k + 1 for the x subsequence above), 
but they differ in the manner in which the second derivative (M,,.,) is defined at 
that point. In the first approach, M,,, is determined by taking finite differences 
of the coordinates of k, k + 1 and k + 2, i.e., 

h4 2 
kfl = 

xk+2 - xk i 
Yk+Z - Yk+l _ Yre+1 - Ylc 

Xk+Z - xk+l xk+l - Xk 
, (8) 

whereas, in the second approach, 

M k+l - - ikfk . (9 

The first proved to be unacceptable because of the very large slopes encountered 
at break points, but the second method has worked quite well and is recommended. 

D. Smoothing 

In the original formulation of this surface tension technique, it was anticipated 
that the interface particles would require smoothing prior to each spline fit. 
Such has not proved to be the case. In fact, particle smoothing has been needed 
only very occasionally, even when calculating highly contorted flows. It has been 
used to smooth out flexures in the interface line that are of such short wavelength 
that they would not likely be resolved in the surface tension computation. In 
Ref. [I], these flexures were usually associated with very short wavelength 
Rayleigh-Taylor instabilities or with nearly right angle interface curves in the 
neighborhood of Kelvin-Helmholtz instabilities. 
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The most difficult aspect of smoothing short wavele~~tb interface 
eir existence. This is done by comparing the value of the second 

of the interface curve, as calculated by the sphne 4% technique, with 
criterion. To determine this criterion, note that the ~ontrib~t~o~ of t 
tension force to the magnitude of the fluid acceleration is like 

where ;6 is the surface tension coefficient associate with the two fiui a?J is Ihe 
average density, K(r) is the curvature of the interface at r, and 8(r - ri) is the 
Dirac function that limits the surface tension effect to the locality of the interface, F+ 

rence formulation this becomes 

where s is the mesh interval. For accuracy, we require that 

In plane coordinates this implies that 

I Y” I 
/I + (Y’>“l”‘” 

= lMJ <&x2? 
T St2 - 

The worst case is when y’ = 0. Therefore, smoothing is ap ied at par-tide k 

The magnitude of each second derivative, Mk, determine 
computation, is compared with this parameter. If, for any parti 
the second derivative exceeds this criterion, smoothing is applied on1 
particular particle (or particles) at which the criterion is exceeded. Its 
is changed by an amount determined from a five point least 5 

the five points being the interface particle in question and the two nearest interface 
particles jn either direction. The method used is a stra~gbtforwa~~ extension of 
that described by Scarborough [7] to the case of unevenly spaced absdssas. 

When smoothing has been applied to all of the par-tides that require it, the 
sphne fit computation is repeated. Again, the second derivatives are tested 
agamst the criterion (12) and smoothing is repeated if necessary. If> after four 
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cycles of smoothing and spline recomputation, there are further violations of the 
criteria, they are ignored. Generally, this situation would indicate that some 
additional treatment, such as improved particle spacing (Section 2-E) or improved 
boundary conditions at subsequence break points (Section 2-C), is required. 

E. Deleting or Adding Particles 

The interface particles, which were evenly spaced along the fluid interface 
initially, do not always retain that even spacing. After long periods of calculation, 
parts of the interface may be sparsely populated with particles, while in another 
section of the interface the particles may be very closely packed. Either extreme 
is bad. When the particle separations are too large, the interface is not well resolved. 
When they are too small, minor fluctuations in particle position can give rise to 
strong surface tension forces. 

The check on particle spacing is the first step in the surface tension calculation. 
If a pair of particles is separated by more than three times the initial spacing, 
a new particle is inserted between them. If the spacing between successive particles 
is less than one third the initial particle spacing, one of the particles is deleted. 
This can be accomplished simply by determining which of the two particles is 
closest to its other neighbor, removing it from the storage array, and adjusting 
the array to account for its absence. The coordinates of the remaining interface 
particles are unchanged. 

Inserting a new particle in an interface line is slightly more difficult. Tentatively, 
its coordinates are taken to be the average coordinates of its neighbors. If the 
interface is curved, however, the new particle may not fit the arc, so its position is 
adjusted by smoothing. The smoothing technique described in Section 2-D is used 
for this purpose, and both the x and y coordinates of the particle are moved. 
When this has been accomplished, the storage array is adjusted to accommodate 
the new particle. 

The facility for adding and deleting interface particles has proved to be of 
immense value in calculating long-running, highly-contorted flows. 

3. CALCULATING THE SURFACE TENSION FORCE 

A. Plane-Coordinates, Spline Fit 

The surface tension force is directed toward minimizing the surface area of a 
fluid interface. In plane coordinates the magnitude of this force per unit surface 
area at a point r in space is 

T&9, 
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where, as indicated earlier, T is the surface tension ~~e~c~e~t of the f&id 
I+) is the curvature of the interface at r. The force is directed norm 
interface, on the concave side. 

In numerical calculations, the surface tension eEeect n be induded in two 
equivalent ways: Either as a boundary condition at the uid interface or as an 
accelerative force that is applied only in those portions of the mesh that lie on 
the Ruid interfagce. The first approach is most appropriate if, in the finite ~~~re~~e 
technique, boundary conditions are otherwise explicitly applied at the interface. 
If not, then it is more convenient to include the surface tension as 
force in the Navier-Stokes equation, but with the sti~u~at~~~ that it 
in those cells which lie along the fluid interface. This is the app 
used in Ref. [I] and it is the basis for the description t 

The calculations of Ref. [l] make use of the two- arker and Cell [4] 
numerical technique for incompressible flow studies, w employs the vel.ocity 
~o~~~~ents and the pressure as dependent variables. En that method, the hosi- 
zontal and vertical components of the velocity are centered on the vertical and 
horizontal mesh cell edges, respectively. The difference equations are centered 
about these same points, and therefore these are the places where the co orients 
of the surface tension force are applied. This is illustrated in Fig. 3. figure 
shows a calculation mesh and a curve that represents a typical hid interface. 
The arrows on the cell edges mark the locations where the csmpo of the 
surface tension force are applied. The length of the arrow indicates atively 
the magnitude of the force component, while the arrowhead shows its dire&m 

FIG. 3. A f?uid interface within a calculation mesh. Ache arrows 01: the cell edges mark the 
locatiors where the surface tension force is applied. 

‘khe surface tension force is actually calculated at points where the i 
fine intersects fines through cell centers. For example, the y ~orn~o~e~t is ~o~~~te~ 
at each place where the interface line crosses a vertical Brie through a cell center. 
The procedure for calculating this component along a sequence of interface 
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particles monotonic in x is as follows: After the spline fit to the particle positions 
has been made, one checks the abscissas of the interface particles until two are 
found that bracket the first cell center, i.e., 

xk-1 < ’ < xk . 
2 

The values of y”(s/2), y’(s/2) and ~(42) are determined from Eqs. (l)-(3), and 
the magnitude of the surface tension force per unit volume is computed from 

TIC/s = Ty”/s[l + (y’)“]“‘S. 03) 

The y component can be obtained through multiplication by [l + (y’)“]-““. For 
subsequences monotonic in x, the sign of the y component is the sign of y”. 
(I.e., where the curve is concave up, the vertical component of surface tension is 
upward.) Therefore, the y component of the surface tension force at x = s/2, 
Y = YWV, is 

ST, = Ty”/s[l + (y’)“]“, 414) 

where y’ and y” are evaluated at s/2. This term is added to the accelerative terms 
of the y component of the Navier-Stokes equation at the mesh point X, Y, where 

Y = the horizontal cell edge such that 1 Y - y ( ;)I < 4 . 

The same procedure is applied to determine the vertical component of surface 
tension in other cells through which the interface line passes. Each time, the 
abscissa is incremented by s, the bracketing interface particles are determined, 
and the values of y, y’ and y” are found. These are used to evaluate ST, and that 
force component is added to the Navier-Stokes equation at the nearest horizontal 
cell boundary. 

The horizontal component of the surface tension force is determined in a similar 
way. Beginning with the first particle in the sequence, the ordinates of the interface 
particles are checked until two are found that bracket a horizontal line through 
cell centers. The abscissa of the point of intersection is determined by linear 
interpolation, and the first and second derivatives are evaluated from Eqs. (1) 
and (2). With these, the x-component of the surface tension force is computed from 

ST, = - Ty’y”/.s[l + (y’)“]“, (1% 

and applied in the Navier-Stokes equation at the vertical cell boundary closest 
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to the point of intersection. Succeeding interface particles are test 
found whose ordinates again bracket a line through cell centers, a 
above is repeated. 

If the sequence of interface particles has been subdivided into several subse- 
quences, then the surface tension determinations above are repeated for each 
subsequence in turn. Only after all of the surface tension contr~b~~tions from the 
;F;gst subsequence have been computed is the spline fit to the second s~bseq~en$e 
made, and similarly for other subsequences. The calculations for monotone 
decreasing x segments is the same as for monotone increasing x segments, 
except that particles are incremented in the reverse order (from last to firs:). 
For subsequences monotonic in y, the procedure is again similar except hat 
formulas (14) and (15) become 

where x’ = dx/dy, x” = d”x/dy2 at the appropriate point on the curve. 

. ~~~~e-~oo~din~~es, Non-Spline Fit 

When a subsequence of the interface line contains fewer than five interface 
particles, one should not use the spline fit method for calculating slopes and 
curvatures of the interface. An alternative method that can be used under those 
circumstances involves fitting three consecutive interface points with a circular 
arc, and using the radius of the circle as the radius of curvature of the interface line. 

As in the spline fit calculation, the y and x components of the surface tension 
ce are computed at each point where the interface line crosses a vertical or a 
izontal line through a cell center, respectively. The y components are c~c~~a~ed 

by testing the abscissas of this sequence of interface particles until two are foun 
that bracket the abscissa of a cell center. A test is made to see which of the two 
particles, say k;: - 1 and k, has an abscissa closest to that of the cell center, 
Assume that this is particle k. Then we wish to determine the radiw of a side 
that passes through the coordinates of particles k - 1, k and k + 1. This is 
given [8] by 

where 

R, = abc/4[d(d - a)(d - b)(d - c)]~/~ 

a = [(x, - xk-1)2 + (y, - Yk-1)211’2, 
b = K&+1 - x3” -k (Y,,, - YIWZ, c 
c = K&+1 - Xk-d2 + (YBfl -- Yk-lw’z, 
d = +(a + b + c). 
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Then y component of the surface tension force per unit volume is then 

ST, = (sgn # T/sR,(l + m2)112, (19) 

where m is the slope of the straight line joining particles k - 1 and k + 1 and 

5 = m(Xk - h-d - (yl, - YM). 
5 is positive if the circular arc is concave up and negative if it is concave down. 
The expression (19) contributes to the accelerative terms of the y component of 
the Navier-Stokes equation at the horizontal mesh boundary closest to particle k. 

This procedure is repeated for all of the particles in the subsequence, testing 
the abscissas of each pair of particles to determine whether they bracket the 
abscissa of a cell center. If so, the computation leading to expression (19) is 
repeated for those particles. When all such contributions to vertically directed 
surface tension forces have been calculated, the determination of x-directed forces 
is made. This time the ordinates of each pair of adjoining interface particles are 
tested to determine whether they bracket the ordinate of a cell center. When two 
such particles are found, the radius of curvature, RI is determined as shown above 
and then the x-component of the surface tension force per unit volume is calculated 
from 

ST, = -m(sgn f[) T/sR,(I + mZ)2. (20) 

The sign of ST, is positive if the concave side is on the right and negative if it is 
on the left. Expression (20) contributes to the x-component of the acceleration 
in the Navier-Stokes equation centered at the nearest vertical mesh boundary 
to particle k. 

C. Cylindrical-Coordinates, Spline Fit 

In three dimensions the curvature at a point r on a surface is 

K(r) = f + +-, 
1 2 

(21) 

where R, and R, are the principal radii of curvature at r. When the surface is 
cylindrically symmetric, with the axis of symmetry coinciding with the z axis, 
then one of the R’s is the radius of curvature at r of a curve formed by the inter- 
section of the surface and a plane through the z-axis. This corresponds to the 
radius of curvature in two dimensions. The other R is the radius of curvature of 
a curve formed by the intersection of the surface with a cone which is tangent 
to the surface at r and has symmetry about the z axis. In this paper, we call the 
first radius R, and the second R2 , and we refer to the corresponding surface tension 
effects as the transverse and circumferential forces, respectively. 
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by the intersection of the surface with the tangent cone) about the cylindrical 
axis, tending to reduce the radius of the ring to zero. The direction of this force is 
therefore normal to the interface in the negative r direction. The magnitude of 
the radius of curvature associated with this force, R, , is the normal distance to 
the axis of symmetry as indicated by the R’s in the figure. 

The direction of the transverse force is always toward the concave side of the 
curve. Thus, when the concave side of the curve in a constant 6 trace is on the 
direction of decreasing r, the two forces act together; when it is on the increasing 
r side, the forces oppose one another. In Fig. 4, point a represents a case where 
the two forces act in the same direction, while b is a case where they oppose one 
another. At point c the curve has zero slope, so that the normal distance to the 
axis of symmetry is infinite and there is no circumferential contribution to the 
surface tension force. 

Very little modification of the surface tension force computation is required 
in going from plane to cylindrical coordinates. The spline fit computation follows 
exactly as before. All that is required is the addition of the circumferential contri- 
bution to Eqs. (14)-(17), and this necessitates the determination of R, . For a 
subsequence of interface points monotonic in r, one can see from Fig. 4 that 

R, = r/sin CL, 

where tan 01 is the slope, z’. Thus 

R, = r[l + (z’)“]~~~/z’. 

As the radius of the fluid interface approaches zero, the circumferential surface 
tension force becomes very large if the slope remains nonzero. This shows, for 
example, why the final stage of breakup of a Rayleigh jet [9] occurs very rapidly. 

Thus, with R2 given by Eq. (22), we can write the component forms of the 
surface tension force per unit volume for the case of cylindrical symmetry. Along a 
sequence of interface points monotonic in I*, these are 

ST, = x s [I +z;z’)‘]” + I 

I 

r[l ; (z’)2] ’ 

(z’)2 
r[l + (+I * 

(23) 

(24) 

The sign of the z-component of the circumferential surface tension force is the 
same as the sign of z’, while the r-component is negative definite. The signs of the 
components of the transverse force follow the pattern indicated for Eqs. (14) 
and (15). 
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Along a sequence monotonic in z, these components of the surface tension force 
per unit volume are 

D ~yli~d~ic~~ Coordinates, Non-Spline Fit 

In Section 3-B a technique was described for calculating the surface tension 
force along subsequences of the interface line that are tso short to ac teiy 
apply the spline fit method. That technique applies equally well in cyl cd- 
coordinates, except that it must be extended to include the circumferential surface 
tension force. As shown in the previous section, this requires a deterrni~a~~o~~ 
for PI, , the radius of curvature associated with the c~~~~rnfe~e~~~a~ force. 

This technique makes use of triplets of interface particles for dating the 
surface tension forces. As in Section 3-B, we demonstrate the met with three 
interface particles, which have coordinates (r;G-l ) zkVI), (P.~ , ZJ and (rkGl , z~<.,~). 
For this case, Eq. (22) for Rz becomes 

R, = P& + m2y2/m, (27) 
where tbe slope, m I= (~5~~~ - z~-J/(~~+~ - rk-J~ With the transverse radius of 
curvature given by Eq. (18), the components of the surface tension f~brce per unit 
volume are written, 

where 

In Eqs. (27)-(29) we always take the positive square root for the term (1 + PP)~/~~ 
Thus R, has the same sign as the slope, m. Froaaa Eq. (28) we see that t 
z-component of the circumferential surface tension force also has the same sign 
as m. The r-component in Eq. (29) is negative definite, however. 

4. THE CALCULATION IN PERSPECTIVE 

Sections 2 and 3 present a technique for inclu ing surface tension e%~ts in 
numerical calculations. That presentation includes descriptions of sever 
programs, which have proved to be extremely useful in calculations o 
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distorted interface motions but which would not necessarily be needed in studies 
of less complicated flows. In this section we attempt to put the entire computation 
in perspective, indicating the order in which the various subprograms are executed 
and giving some idea of the situations where they would be needed. 

In this discussion we assume that the interface particles have initially been placed 
along the fluid interface at a spacing that is appropriate to the particular problem 
and that a technique exists for moving these particles through the mesh at each 
subsequent calculation cycle (see Section 2-A). We concern ourselves here with 
the procedure for determining at each calculation cycle the components of the 
surface tension force from the known position of the interface particles. Figure 5 
shows a Aow diagram that outlines the major steps in such a program. 

INTO MONOTONIC SUBSEQUENCES. Gi 

CALCULATE SECOND DERIV- 
ATIVE FOR SPLINE FIT 

1 
CALCULATE ALL STY FOR 

THIS SUBSEQUENCE 

CALCULATE ALL STY FOR 
THtS SUBSEOUENCE 

1 
CALCULATE ALL ST, FOR 

THIS SUBSEQUENCE 
1 

YES A END 

FIG. 5. A flow diagram of a program for surface tension calculation. 
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The first step in the surface tension computation is a test to determine w 
an excess or a scarcity of particles exists anywhere along the 
(Section 2-E). These tend to develop after long periods of calculation through 
the stretching of the interface and the concentration of particles in certain parts 
of the interface, particularly near the center of a vortex. The ~o~~e~trat~~~s result 
from the area weighting technique for deter g the particle veBocity a 
are most pronounced in regions where one flui s a greater velocity tangent 
to the interface than the other fluid. For this re he provision for a~~~~g and 
d g particles is perhaps essential for t&e successful long term ~alcu~at~o~ of 
h contorted flows. But in less complicated, uniform shear flows, this portion 
0 e surface tension calculation can be bypassed. 

The next major part of the calculation is the s~b~~is~o~ of the ordered se 
of interface particles into subsequences that are monotonic in the 
coordinates. This procedure is necessary in highly contorted 
spline fit technique requires a monotonically varying abscissa and a finite slope. 
If one could be sure that the interface would not be subjected to strong folding 
in the problems to which the method would be applied, then this section could 

itted and at least fifty percent of the later programming of the surface tension 
tion could be avoided. However, if a provision for subdivision of the ful: 

sequence of interface particles is necessary, then this phase of the calculation 
be completed before any curve fitting is begun. 

Generally one has some a priori knowledge of the interface or~e~tat~o~ that 
can be put to good use in the logical process of s~b~~vid~ng the interface into 
monotonic segments. For example, if it is known that the interfac 
ends at vertical boundaries of the mesh, then one can require that 
last segments of the interface hne have x as the abscissa. Kn the interm 
of the hne, a considerable amount of testing is required. The determi~atiQn of 
the proper abscissa for each section requires tests to see if rno~otQ~~ 
are reversed or if slopes exceed the criterion outlined in Section 2-C. 
change in abscissa is called for, further tests ar ded to insure that the break 
occurs well away from regions of infinite slope. also have to make provision 
for short sequences of particles to which the technique ~a~~~t be 
Then, for each subsequence of interface particles, an index must be formed to 
kndicate the first particle and the number of particles in the s~bseq~e~~e~ and a 
technique for flagging must be developed to mark the s~bse~~~n~e as increasing, 
decreasing or non-spline fit. 

hen the monotonic subdivisions of the interface particle 
each subdivision is treated independently for the caEc n of the surface 

tension force components. The first step in this treatment is to determine abetter 
a non-spline fit technique should be applied to this sequence. This 
fairly rare occurrence if the interface is suf&ientiy well resolved and t 
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calculation is stable. In fact, a non-spline fit method for calculating surface tension 
forces would probably not be required in most programs unless short wavelength 
interface fluctuations (on the order of a few particle spacings) or severe interface 
folding were anticipated. However, if these are required, the necessary procedure 
is specified in Sections 3-B or D. 

In the more likely event of a subsequence to which the spline-fit technique will 
be applied, the next stage of the calculation is the evaluation of the second 
derivatives of the approximating function at the interface points, following the 
outline presented in 2-B. This involves the explicit inversion of a tri-diagonal 
matrix. The second derivatives are then tested against the criterion described 
in Section 2-D to determine whether any particle coordinate require smoothing. 

In the calculations of Ref. [1], criterion violations were quite rare and usually 
were associated with short wavelength Rayleigh-Taylor instabilities or with the 
use of boundary condition (8) at subsequence junction points. In problems for 
which the fluid configuration is physically and numerically stable and not highly 
contorted, and in which condition (9) is used, there should be little need for 
smoothing, except when new points are added to the interface line (see Section 2-E). 
When smoothing is applied, at least some particles experience a change of coor- 
dinates and this requires a recomputation of the spline fit data. Since this is 
time-consuming for large subsequences, only four smoothing operations per sub- 
sequence, per cycle of calculation are permitted. 

The final step of this process, the computation of the components of the surface 
tension force, is next. The two components are calculated separately, according 
to the description given in Sections 3-A and C, and the order of calculation is 
immaterial. As they are calculated, these force components per unit volume are 
added to the accelerative forces at the appropriate mesh points. In the calculations 
of Ref. [I], it was found to be convenient to make the surface tension computation 
the first step in the calculation cycle, since temporary computer storage needed 
in the spline fit calculation was available at that time. 

When the calculations for this subsequence are complete, a test is made to 
determine whether there are any additional subsequences for which the procedure 
needs to be repeated. If not, then the surface tension computation is complete, 
except for the printing of results if this is desired. 

The computer time required for the entire surface tension computation is not 
large compared to the time used in a two-dimensional, incompressible flow 
calculation. In the highly contorted flows of Ref. [I], the computer time was 
increased by about ten percent per cycle when the surface tension capability was 
added to the calculation. The reason that increase is relatively modest is that the 
determination of the surface tension force involves only a one-dimensional array 
of particles. 
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